Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion.

Identifieur interne : 000668 ( Main/Exploration ); précédent : 000667; suivant : 000669

Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion.

Auteurs : Angelina Huseinovic [Pays-Bas] ; Stefan J. Dekker [Pays-Bas] ; Bob Boogaard [Pays-Bas] ; Nico P E. Vermeulen [Pays-Bas] ; Jan M. Kooter [Pays-Bas] ; J Chris Vos [Pays-Bas]

Source :

RBID : pubmed:29978260

Descripteurs français

English descriptors

Abstract

In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.

DOI: 10.1007/s00726-018-2613-8
PubMed: 29978260
PubMed Central: PMC6153950


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion.</title>
<author>
<name sortKey="Huseinovic, Angelina" sort="Huseinovic, Angelina" uniqKey="Huseinovic A" first="Angelina" last="Huseinovic">Angelina Huseinovic</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dekker, Stefan J" sort="Dekker, Stefan J" uniqKey="Dekker S" first="Stefan J" last="Dekker">Stefan J. Dekker</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boogaard, Bob" sort="Boogaard, Bob" uniqKey="Boogaard B" first="Bob" last="Boogaard">Bob Boogaard</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vermeulen, Nico P E" sort="Vermeulen, Nico P E" uniqKey="Vermeulen N" first="Nico P E" last="Vermeulen">Nico P E. Vermeulen</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kooter, Jan M" sort="Kooter, Jan M" uniqKey="Kooter J" first="Jan M" last="Kooter">Jan M. Kooter</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vos, J Chris" sort="Vos, J Chris" uniqKey="Vos J" first="J Chris" last="Vos">J Chris Vos</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands. j.c.vos@vu.nl.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29978260</idno>
<idno type="pmid">29978260</idno>
<idno type="doi">10.1007/s00726-018-2613-8</idno>
<idno type="pmc">PMC6153950</idno>
<idno type="wicri:Area/Main/Corpus">000510</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000510</idno>
<idno type="wicri:Area/Main/Curation">000510</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000510</idno>
<idno type="wicri:Area/Main/Exploration">000510</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion.</title>
<author>
<name sortKey="Huseinovic, Angelina" sort="Huseinovic, Angelina" uniqKey="Huseinovic A" first="Angelina" last="Huseinovic">Angelina Huseinovic</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dekker, Stefan J" sort="Dekker, Stefan J" uniqKey="Dekker S" first="Stefan J" last="Dekker">Stefan J. Dekker</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boogaard, Bob" sort="Boogaard, Bob" uniqKey="Boogaard B" first="Bob" last="Boogaard">Bob Boogaard</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vermeulen, Nico P E" sort="Vermeulen, Nico P E" uniqKey="Vermeulen N" first="Nico P E" last="Vermeulen">Nico P E. Vermeulen</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kooter, Jan M" sort="Kooter, Jan M" uniqKey="Kooter J" first="Jan M" last="Kooter">Jan M. Kooter</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vos, J Chris" sort="Vos, J Chris" uniqKey="Vos J" first="J Chris" last="Vos">J Chris Vos</name>
<affiliation wicri:level="3">
<nlm:affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands. j.c.vos@vu.nl.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam</wicri:regionArea>
<placeName>
<settlement type="city">Amsterdam</settlement>
<region nuts="2" type="province">Hollande-Septentrionale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Amino acids</title>
<idno type="eISSN">1438-2199</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetaminophen (toxicity)</term>
<term>Amino Acid Transport Systems (antagonists & inhibitors)</term>
<term>Amino Acid Transport Systems (genetics)</term>
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Amino Acids (metabolism)</term>
<term>Enzyme Inhibitors (toxicity)</term>
<term>Hep G2 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Tryptophan (metabolism)</term>
<term>Ubiquitin (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Acétaminophène (toxicité)</term>
<term>Antienzymes (toxicité)</term>
<term>Cellules HepG2 (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Systèmes de transport d'acides aminés (antagonistes et inhibiteurs)</term>
<term>Systèmes de transport d'acides aminés (génétique)</term>
<term>Systèmes de transport d'acides aminés (métabolisme)</term>
<term>Tryptophane (métabolisme)</term>
<term>Ubiquitine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Amino Acids</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Tryptophan</term>
<term>Ubiquitin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Acetaminophen</term>
<term>Enzyme Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
<term>Tryptophane</term>
<term>Ubiquitine</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Acétaminophène</term>
<term>Antienzymes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hep G2 Cells</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HepG2</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29978260</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-2199</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>50</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2018</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Amino acids</Title>
<ISOAbbreviation>Amino Acids</ISOAbbreviation>
</Journal>
<ArticleTitle>Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion.</ArticleTitle>
<Pagination>
<MedlinePgn>1377-1390</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00726-018-2613-8</ELocationID>
<Abstract>
<AbstractText>In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huseinovic</LastName>
<ForeName>Angelina</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dekker</LastName>
<ForeName>Stefan J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boogaard</LastName>
<ForeName>Bob</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vermeulen</LastName>
<ForeName>Nico P E</ForeName>
<Initials>NPE</Initials>
<AffiliationInfo>
<Affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kooter</LastName>
<ForeName>Jan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vos</LastName>
<ForeName>J Chris</ForeName>
<Initials>JC</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3737-9942</Identifier>
<AffiliationInfo>
<Affiliation>AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HZ, Amsterdam, The Netherlands. j.c.vos@vu.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>10-001-204.</GrantID>
<Agency>AIMMS, the Amsterdam Institute for Molecules, Medicines and Systems</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Amino Acids</MedlineTA>
<NlmUniqueID>9200312</NlmUniqueID>
<ISSNLinking>0939-4451</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C470089">TAT1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C429825">TAT2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>362O9ITL9D</RegistryNumber>
<NameOfSubstance UI="D000082">Acetaminophen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8DUH1N11BX</RegistryNumber>
<NameOfSubstance UI="D014364">Tryptophan</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000082" MajorTopicYN="N">Acetaminophen</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056945" MajorTopicYN="N">Hep G2 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014364" MajorTopicYN="N">Tryptophan</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025801" MajorTopicYN="N">Ubiquitin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acetaminophen</Keyword>
<Keyword MajorTopicYN="N">Amino acid permeases</Keyword>
<Keyword MajorTopicYN="N">Nutrient starvation</Keyword>
<Keyword MajorTopicYN="N">Tryptophan</Keyword>
<Keyword MajorTopicYN="N">Tyrosine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29978260</ArticleId>
<ArticleId IdType="doi">10.1007/s00726-018-2613-8</ArticleId>
<ArticleId IdType="pii">10.1007/s00726-018-2613-8</ArticleId>
<ArticleId IdType="pmc">PMC6153950</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26976-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12709439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2012 Dec 15;590(24):6413-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Dec;36(6):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10654085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Epidemiol Biomarkers Prev. 2011 Dec;20(12):2637-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paediatr Respir Rev. 2013 Mar;14(1):9-15; quiz 16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Oct;192(2):319-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Nov;23(21):7566-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 3;284(27):17968-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2003 Dec;31(12):1499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Pediatr. 2014 Apr;168(4):313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24566677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):5010-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Aug 17;5(8):e11935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Toxicol. 2017 Mar;91(3):1385-1400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Oct 1;239(1):171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15451116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2014 Dec 1;11(12):4395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25313982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Feb;37(Pt 1):242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr. 1992 Feb 7;591(1-2):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1613051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2005 Dec;42(6):1364-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2015 Jan;32(1):29-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1983 Nov;25(2-3):333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6363214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2016 Aug 5;255:12-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2018 Mar;47:259-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29258884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Amino Acids. 2016;2016:8952520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26881063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2011 Jun 10;29(17):2424-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Dec;10(12):1856-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liver Int. 2014 Aug;34(7):e171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24575957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Sep 20;146(6):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Toxicol. 1996 Apr;78(4):224-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8861779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Apr;32(4):373-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 2001 Jan;31(1):55-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11215692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Jan;151(Pt 1):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2010 Jul 17;376(9736):190-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 09;9(4):e93597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24718614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Mar 14;12(3):e0173573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28291796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pak Med Assoc. 2012 May;62(5):524-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22755330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Toxicol. 2012 Apr;28(2):69-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22258563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asia Pac Allergy. 2014 Jan;4(1):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24527413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1992 Sep;40(6):643-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18601163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Intern Med. 2003 Feb;253(2):240-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12542566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Oct;14(10):6597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7523855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 15;122(Pt 12):2089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19494127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Dec 18;10(12):e1004860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25521617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anesthesiology. 1997 Jun;86(6):1359-66; discussion 8A</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9197306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Jul;12(7):990-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23666621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jun;161(2):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072454</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Hollande-Septentrionale</li>
</region>
<settlement>
<li>Amsterdam</li>
</settlement>
</list>
<tree>
<country name="Pays-Bas">
<region name="Hollande-Septentrionale">
<name sortKey="Huseinovic, Angelina" sort="Huseinovic, Angelina" uniqKey="Huseinovic A" first="Angelina" last="Huseinovic">Angelina Huseinovic</name>
</region>
<name sortKey="Boogaard, Bob" sort="Boogaard, Bob" uniqKey="Boogaard B" first="Bob" last="Boogaard">Bob Boogaard</name>
<name sortKey="Dekker, Stefan J" sort="Dekker, Stefan J" uniqKey="Dekker S" first="Stefan J" last="Dekker">Stefan J. Dekker</name>
<name sortKey="Kooter, Jan M" sort="Kooter, Jan M" uniqKey="Kooter J" first="Jan M" last="Kooter">Jan M. Kooter</name>
<name sortKey="Vermeulen, Nico P E" sort="Vermeulen, Nico P E" uniqKey="Vermeulen N" first="Nico P E" last="Vermeulen">Nico P E. Vermeulen</name>
<name sortKey="Vos, J Chris" sort="Vos, J Chris" uniqKey="Vos J" first="J Chris" last="Vos">J Chris Vos</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000668 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000668 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29978260
   |texte=   Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29978260" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020